Discrete Laplace-Beltrami operators for shape analysis and segmentation
نویسندگان
چکیده
Shape analysis plays a pivotal role in a large number of applications, ranging from traditional geometry processing to more recent 3D content management. In this scenario, spectral methods are extremely promising as they provide a natural library of tools for shape analysis, intrinsically defined by the shape itself. In particular, the eigenfunctions of the Laplace-Beltrami operator yield a set of real valued functions that provide interesting insights in the structure and morphology of the shape. In this paper, we first analyze different discretizations of the Laplace-Beltrami operator (geometric Laplacians, linear and cubic FEM operators) in terms of the correctness of their eigenfunctions with respect to the continuous case. We then present the family of segmentations induced by the nodal sets of the eigenfunctions, discussing its meaningfulness for shape understanding.
منابع مشابه
Anisotropic Laplace-Beltrami Operators for Shape Analysis
This paper introduces an anisotropic Laplace-Beltrami operator for shape analysis. While keeping useful properties of the standard Laplace-Beltrami operator, it introduces variability in the directions of principal curvature, giving rise to a more intuitive and semantically meaningful diffusion process. Although the benefits of anisotropic diffusion have already been noted in the area of mesh p...
متن کاملDiscrete Laplace-Beltrami operators and their convergence
The convergence property of the discrete Laplace–Beltrami operators is the foundation of convergence analysis of the numerical simulation process of some geometric partial differential equations which involve the operator. In this paper we propose several simple discretization schemes of Laplace–Beltrami operators over triangulated surfaces. Convergence results for these discrete Laplace–Beltra...
متن کاملConvergent discrete Laplace-Beltrami operators over surfaces
The convergence problem of the Laplace-Beltrami operators plays an essential role in the convergence analysis of the numerical simulations of some important geometric partial differential equations which involve the operator. In this note we present a new effective and convergent algorithm to compute discrete Laplace-Beltrami operators acting on functions over surfaces. We prove a convergence t...
متن کاملOn approximation of the Laplace-Beltrami operator and the Willmore energy of surfaces
Discrete Laplace–Beltrami operators on polyhedral surfaces play an important role for various applications in geometry processing and related areas like physical simulation or computer graphics. While discretizations of the weak Laplace–Beltrami operator are well-studied, less is known about the strong form. We present a principle for constructing strongly consistent discrete Laplace–Beltrami o...
متن کاملConvergence of Discrete Laplace-Beltrami Operators over Surfaces
The convergence property of the discrete Laplace-Beltrami operator is the foundation of convergence analysis of the numerical simulation process of some geometric partial differential equations which involve the operator. The aim of this paper is to review several already used discrete Laplace-Beltrami operators over triangulated surface and study numerically as well as theoretically their conv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers & Graphics
دوره 33 شماره
صفحات -
تاریخ انتشار 2009